Climate System Modelling

Climate models help us to gain information on the climate system and estimate how the climate will change in the future. In climate model simulations, anthropogenic and natural forcings as well as feedback phenomena are taken into account and their impact on the climate is evaluated. The results can be used when deciding about methods of mitigating and adapting to climate change.

Atmospheric black carbon modeled with ECHAM averaged over one year.

The Climate System Modelling group studies the physical and chemical processes, interactions and feedbacks of the climate system. Atmospheric aerosols, radiation, clouds, snow and interactions between atmosphere, land and oceans are the main research subjects. The group develops and uses a wide range of different models including process-level, large-eddy simulation, Earth system, regional climate and integrated assessment models. Group’s climate simulations are also used to support regional and global adaptation and impact studies of climate change. One of the strategically prominent tasks of the group is to co-operate with the atmospheric sciences center INAR (Institute for atmospheric and Earth system research) in the field of global modelling.

Climate system modelling group photo by Jarkko Niemi

Areas of research and duties

  • Assessing the impact of aerosols on climate

  • Quantifying feedbacks related for example to surface reflectance and carbon cycle

  • Evaluating the climate effects and uncertainties of negative emission technologies

  • Improving aerosol-cloud interactions in the climate models

  • Providing regional climate scenarios over Finland

  • Evaluating uncertainties of climate models

  • Optimizing mitigation and adaptation measures and developing alternative policy scenarios

The group is involved in EU, regional and National projects.


 OceanNETs: Ocean-based negative emission technologies impacts and possibilities are explored using Earth System Model simulations. The CO2 concentration is reduced by directly removing it from sea surface or by increasing alkalinity of the surface ocean. 

CAMAERA: The H2020 project CAMS AERosol Advancement (CAMAERA) aims to improve the aerosol modelling capabilities of the regional and global systems.

ACCAERO: Academy of Finland project ACCurate AEROsols in climate simulations aims to use observations, climate model simulations and machine learning to reduce the uncertainties related to aerosol forcing.

CRiceS: The EU H2020 project CRiceS focuses on improving model predictions of the role of polar processes in the climate system that consists of the oceans, ice and snow cover, and the atmosphere. The project is coordinated by FMI. 

FORCeS: The H2020 project FORCeS aims to understand and reduce the long-standing uncertainty in anthropogenic aerosol radiative forcing, allowing to increase confidence in climate projections. 

FOCI:The HORIZON project FOCI aims to assess the impact of key radiative forcers, the processes of their impact on the climate system.  Implement these into global Earth System Models and into Regional Climate Models, and  to investigate mitigation and/or adaptation policies incorporated in selected scenarios of future development. 

MOAC: Marine organic aerosol and its impacts on clouds and climate. In this project we use modelling tools like large eddy simulator UCLALES-SALSA to assess the impact of marine organic aerosol on shallow boundary layer clouds. Eventually this project aims at reducing large uncertainties related to the climate effects of marine aerosols and their impacts on clouds. 

NETS: Designing robust mitigation scenarios that hedge against the uncertainties of the Earth system and negative emission technologies. The project combines integrated assessment modelling with probabilistic Earth system modelling.  

RealSolar: Modeling the variability and role of solar power in the Nordic

ClimComp: The project examines what are the competencies needed in the society to efficiently mitigate and adapt to climate change and how these competencies are learned and taught throughout the education system. Our group specifically develops data and code platforms for easier access to climate data. 

SuCCESs: The SuCCESs project analysesthe key interdependencies between energy, land-use and materials systems for climate change mitigation. We develop a novel integrated assessment mode (SuCCESs IAM) and use it to calculate long-term mitigation scenarios that achieve the Paris Agreement climate targets within the energy-land-materials system. 

Magica:Tenhances knowledge exchange from climate research to societies to support policy-making and climate actions across Europe. Among its outreach and engagement activities, MAGICA will stage key European climate events including ECCA (European Climate Change Adaption) Conferences in 2023 and 2025, Climate Neutrality Forum, Sea Level Rise Conference, and a special session at EGU2023. 

List of other projects: 

  • Ilmastopaneeli POLKU II 

  • Finscapes


Past projects 

  • Formas-CoBACCA 

  • EOSC Nordic

  • SnowAPP

  • OptiMit


In our groups work we use and develop many tools and models, which have been shortly described here.

Research tools

EC-Earth: A European Community Earth System Model is a comprehensive model developed in collaboration with 30 institutes in 12 European countries. It can be used to study the effects of climate change in land, atmosphere and ocean as well as the connections between the different components of the Earth system.

TM5: Transport Model 5, a chemistry transport model, which simulates the evolution of aerosols and trace gases in the atmosphere. It is the aerosol-chemistry component of EC-Earth 3.   

LPJ-GUESS: A process-based dynamic global vegetation-terrestrial ecosystem model (DGVM) designed for regional and global studies. It simulates dynamics and composition of vegetation in response to changes in climate, land-use change, atmospheric CO2, and nitrogen.

(Open)IFS: Atmospheric model developed at the European Centre for Medium range Weather Forecasts. Model is used within EC-Earth Earth system model as well as standalone model. Aerosol module development is ongoing in the group for the mode.

NEMO: Nucleus for European modelling of the Oceans: Global ocean model used in the EC-Earth Earth system model.

PISCES: Biogeochemistry model for the ocean.

NorESM: Norwegian Earth System Model, developed in Norway with most parts of the model based on the Community Climate System Model developed by the National Center for Atmospheric Research (NCAR) in the USA. Like EC-Earth, NorESM is a comprehensive climate model that can be used to study various topics related to climate and climate change.

UCLALES-SALSA: a large eddy simulator coupled with detailed aerosol-cloud microphysics module SALSA. The large eddy simulator predicts turbulent atmospheric flow fields that carry heat, moisture and aerosol particles and cloud droplets. Turbulent updrafts are needed to produce high humidities that produce and maintain shallow clouds. The SALSA module simulates cloud formation and processes related to precipitation and cloud droplet freezing, which have an impact on cloud stability. 

Earth System Model Validation Tool (ESMValTool): Open-source tool designed for analysis of the Coupled Model Intercomarison Project (CMIP) simulation data. Includes many of IPCC report diagnostics as well tools to analyse and manipulate the Earth System Model data.

Harmonie Clim: 

SCORE:  An integrated assessment model (IAM) based on marginal abatement cost (MAC) curves and a simplified climate model, including a stochastic programming approach for uncertainty and learning for selected parameters. The model has been used particularly to assess mitigation strategies under uncertainty and learning regarding climate sensitivity.

SuCCESs: A global integrated assessment model (IAM) developed at FMI for assessing the interactions between energy, land, material and climate systems. We use the model for analyzing optimal climate change mitigation strategies in long-term scenarios, focusing particularly on the synergies and trade-offs between actions in energy, land-use and material production.

University of Victoria Earth System Climate Model (UVic ESCM): An Earth system model of intermediate complexity that allows a wider range of scenarios or uncertain parameters to be explored compared to comprehensive Earth system models. It consists of a 3D Ocean model, full carbon cycle, and 2D energy-moisture balance model to represent the atmosphere. 


Joonas Merikanto, PhD, Head of group, Senior Research Scientist

My interests span from the production of new knowledge on climate to the dialogue between science and society on climate change issues, for example via coupling science and art. My research is focused on the climate effects of atmospheric aerosol particles and on broader interconnections within the climate system. In my work I use global climate models, mathematical modeling and a pen and a paper. CV Joonas Merikanto

Tommi Bergman, PhD, Senior Research Scientist

I develop global Earth system models and use them to explore the interactions between ocean, land surface and atmosphere. In the past I have developed e.g. new particle formation and growth mechanisms. I am interested especially on how biospheric changes, emissions and particle formation and their interactions with the radiation, atmosphere and land surface change in the warming climate. Furthermore, I am interested in improving and evaluating modelling methodologies in general. CV Tommi Bergman

Arundathi Chandrasekharan

Tommi Ekholm, DSc, Research Professor

My research interest is on determining efficient strategies for mitigating climate change. The tools for this are numerical optimization models, particularly Integrated Assessment Models (IAMs); while the scope can vary from global emission pathways to the modelling of electricity markets or management of forest stands. One aspect that particularly interests me is the management of uncertainty. From this viewpoint, I've studied e.g. how to remain below 2°C under uncertainty in climate sensitivity, how to manage forest carbon stocks under damage risks, or how to determine revenue risks for renewable energy investments. CV Tommi Ekholm

Nadine-Cyra Freistetter, Msc, Researcher

I am a doctoral researcher specializing in climate change and sustainability modelling in long-term scenarios to inform policy. I currently work with the SuCCESs Integrated Assessment Model that is designed to assess multi-system climate change mitigation strategies. My previous studies include climate change impacts on road weather, greenhouse gas emissions from boreal forests and invasive species management. CV Nadine-Cyra Freistetter

Risto Makkonen, PhD, Research Professor

I develop global Earth System Models and especially their description of atmospheric composition (aerosols and chemistry). I am interested in aerosol-climate interactions as well as Earth System feedback mechanisms acting via atmospheric aerosols. I've studied how anthropogenic aerosols could influence present-day climate, and how the aerosol-climate forcing evolves as natural and human-made aerosol sources change throughout the 21st century.

Tuukka Mattlar, MSc, Researcher

I’m studying strategy and operations research and focusing on optimization and decision-making tools. My research focuses on modelling material feedstocks in Integrated Assessment Models (IAMs) and how these affect climate change mitigation strategies. Additionally, I study and develop future scenarios focusing on technology foresight and managing uncertainty.

Carla Maria Di Natale 

I am interested in climate modeling and mitigation strategies. My research aims to understand uncertainties and correlations between carbon removal potential of negative emission technologies (NETs) with each other and climate system parameters. The research includes the design of NETs portfolios able to meet the Paris Agreement targets in a cost-efficient way and mitigate risks of uncertain climate sensitivity and uncertain potential of NETs. My master's thesis research was focused on climate change adaptation using low impact development solutions in an urban catchment. 

Declan O'Donnell, PhD, Senior Research Scientist

Pirkka Ollinaho, PhD, Research Scientist

My main scientific interests are related to probabilistic prediction of weather and climate (a.k.a. ensemble forecasting). I'm also currently working on model tuning via algorithmic tools, developing a work flow controller for ensemble forecasting and contribute some time to teach about ensemble forecasting. CV Pirkka Ollinaho

Antti-Ilari Partanen, PhD, Senior Research Scientist

I am interested in policy-relevant climate science, and my main tools are global climate models. Currently, my focus are impacts and uncertainties of negative emission technologies. I have also done research on carbon budgets, solar geoengineering and climate effects of aerosol particles. CV Antti-Ilari Partanen 

Marje Prank, PhD, Research Scientist

I have experience in developing and applying modelling tools ranging from process models and LES to earth system models for studying various processes related to atmospheric aerosols. I am especially interested in topics that combine the knowledge of atmospheric physics with that of biological processes, such as natural emissions (sea spray, wildland fires, desert dust, biogenic primary organic particles such as pollen or fungal spores, biogenic VOCs, etc.) and their interactions with the changing climate. CV Marje Prank

Tomi Raatikainen, PhD, Docent, Senior Research Scientist

My research is focused on atmospheric fine particles called aerosol, and especially their effects on clouds and climate. In this work I use detailed numerical models that can simulate how concentration and composition of the aerosol, which acts as a cloud condensation nuclei, affects cloud properties and dynamics. I have also experience about processing and interpreting aerosol measurements related to their optical properties, chemical composition and cloud interactions. CV Tomi Raatikainen

Aapo Rautiainen, PhD, Research Scientist

I am an economist interested in forests, land use and climate policy. In my current work I examine the potential to utilize forests in global climate change mitigation efforts, and how their optimal use depends on external factors, such as technological development. Previously, I have worked on a range of forest-and-climate-related topics; for example, I have studied the design of policy instruments to harmonize forestry and climate policy objectives.

Petri Räisänen, PhD, Docent, Senior Research Scientist

I do research on climate modeling and radiative transfer in the atmosphere and snow. The general goal of my work is to contribute to the development of global climate models, and thereby, more reliable climate change projections. Currently, I study (e.g.) the impact of black carbon in snow on the energy budget. I have also studied, for example, the effects of snow grain shape on the reflection of solar radiation by snow, and the effects of subgrid-scale cloud features (clouds too small to be resolved by a climate model) on radiative transfer. CV Petri Räisänen

Theresa Schaber, Msc, Researcher, PhD student

I am interested in developing climate change mitigation strategies, with Integrated Assessment Models being the main research tool. Currently I’m researching the role of carbon removal in global mitigation strategies, particularly focusing on how to manage risks and uncertainties associated with carbon removal. 

Laura Thölix, PhD, Research Scientist

My research is focused on climate forest interaction, and I study it with climate models. I have also studied ozone layer with a chemistry-climate model. In addition I have taken part in very long climate model simulations. We have simulated climate and ice sheet thickness even one million year to the future under different CO2 scenarios. CV Laura Thölix

Laura Utriainen, MSc student 

I am MSc student in Engineering Physics and working on my master'sthesis.I am interested in computational physics and statistics, and most importantly the applications of those. My thesiswork covers studying a convection-permitting regional climate models and the models’ produced climate data for history and future climates. Currently, I focus on the precipitation change and the impacts of climate change on the precipitation in Finland based on the model output. 



Ekholm, T., Freistetter, N.-C., Rautiainen, A., and Thölix, L.: CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests, Geoscientific Model Development 17, 3041–3062, doi:10.5194/gmd-17-3041-2024, 2024.

Foreback, B., Mahura, A., Clusius, P., Xavier, C., Baykara, M., Zhou, P., Nieminen, T., Sinclair, V., Kerminen, V.-M., Kokkonen, T. V., Hakala, S., Aliaga, D., Makkonen, R., Baklanov, A., Nuterman, R., Xia, M., Hua, C., Liu, Y., Kulmala, M., Paasonen, P. & Boy, M.: A new implementation of FLEXPART with Enviro-HIRLAM meteorological input, and a case study during a heavy air pollution event, Big Earth Data, doi: 10.1080/20964471.2024.2316320, 2024.

Mahura A., Baklanov A., Makkonen R., Boy M., Petäjä T., Lappalainen H.K., Nuterman R., Kerminen V-M., Arnold S.R., Jochum M., Shvidenko A., Esau I., Sofiev M., Stohl A., Aalto T., Bai J., Chen Ch., Cheng Ya., Drofa O., Huang M., Järvi L., Kokkola H., Kouznetsov R., Li T., Malguzzi P., Monks S., Poulsen M.B., Noe S.M., Palamarchuk Yu., Foreback B., Clusius P., Rasmussen T.A.S., She J., Sørensen J.H., Spracklen D., Su H., Tonttila J., Wang S., Wang J., Wolf-Grosse T., Yu Y., Zhang Q., Zhang W., Zhang We., Zheng S., Li S., Li Y., Zhou P., & Kulmala M.: Towards seamless environmental prediction – development of Pan-Eurasian EXperiment (PEEX) modelling platform, Big Earth Data, doi:10.1080/20964471.2024.2325019, 2024

Nordling, K., Keskinen, J.-P., Romakkaniemi, S., Kokkola, H., Räisänen, P., Lipponen, A., Partanen, A.-I., Ahola, J., Tonttila, J., Alper, M. E., Korhonen, H., and Raatikainen, T.: Technical note: Emulation of a large-eddy simulator for stratocumulus clouds in a general circulation model, Atmos. Chem. Phys., 24, 869–890, doi:10.5194/acp-24-869-2024, 2024

Rantanen, M., Räisänen, J., & Merikanto, J.: A method for estimating the effect of climate change on monthly mean temperatures: September 2023 and other recent record‐warm months in Helsinki, Finland. Atmospheric Science Letters, e1216 , doi:10.1002/asl.1216, 2024

Schaber, T., Ekholm, T., Merikanto, J. et al.: Prudent carbon dioxide removal strategies hedge against high climate sensitivity, Commun Earth Environ 5, 285, doi:10.1038/s43247-024-01456-x, 2024

Suomi, J., Saranko, O., Partanen, A.-I., Fortelius, C., Gonzales-Inca, C., and Käyhkö, J.: Evaluation of surface air temperature in the HARMONIE-AROME weather model during a heatwave in the coastal city of Turku, Finland, Urban Clim, 53, 101811, doi:10.1016/j.uclim.2024.101811, 2024


Dada, L., Stolzenburg, D., Simon, M., Fischer, L., Heinritzi, M., Wang, M., ... & Kulmala, M.:, Role of sesquiterpenes in biogenic new particle formation. Science Advances, 9(36), eadi5297, 2023

Di Natale C. M., Tamm O. & Koivusalo H. 2023: Climate change adaptation using low impact development for stormwater management in a Nordic catchment., Boreal Env. Res., 28, 243–258, 2023.

Ekblom, M., Tuppi, L., Räty, O., Ollinaho, P., Laine, M., & Järvinen, H.: Filter Likelihood as an Observation-Based Verification Metric in Ensemble Forecasting, Tellus A: Dynamic Meteorology and Oceanography, 75(1), 69–87, doi:10.16993/tellusa.96, 2023

Fouilloux, A., Iaquinta, J., Gupta, A. K., Struthers, H., Landgren, O., Dwarakanath, P., Bergman, T., He, Y., Building on Communities to Further Software Sustainability, Computing in Science & Engineering, vol. 25, no. 3, pp. 84-88, May-June 2023, doi:10.1109/MCSE.2023.3318749, 2023

He, X.-C., Shen, J., Iyer, S., Juuti, P., Zhang, J., Koirala, M., Kytökari, M. M., Worsnop, D. R., Rissanen, M., Kulmala, M., Maier, N. M., Mikkilä, J., Sipilä, M., and Kangasluoma, J.:, Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods, Atmos. Meas. Tech., 16, 4461–4487, doi:10.5194/amt-16-4461-2023, 2023.

He, Xu-Cheng, et al. Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere., Science 382.6676, 1308-1314, doi:10.1126/science.adh2526, 2023

Kivimäki, M., Batty, G.D., Pentti, J., Suomi, J., Nyberg, S.T., Merikanto, J., Nordling, K., Ervasti, J., Suominen, S.B., Partanen, A.I., Stenholm, S., Käyhkö, J., and Vahtera, J., Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. Environmental health perspectives, 131(12), p.127020, doi:10.1289/EHP12080, 2023

Lapere, R., Thomas, J. L., Marelle, L., Ekman, A. M. L., Frey, M. M., Lund, M. T., Makkonen, R., Ranjithkumar, A., Salter, M. E., Samset, B. H., Schulz, M., Sogacheva, L., Yang, X. Zieger, P., The representation of sea salt aerosols and their role in polar climate within CMIP6, Journal of Geophysical Research: Atmospheres, 128, e2022JD038235, doi:10.1029/2022JD038235, 2023.

Lintunen A., Aalto J., Asmi A., Aurela M., Bäck J., Ehn M., Ezhova E., Hakola H., Hartonen K., Heinonsalo J., Hellén H., Hölttä T., Jokinen T., Järvi L., Järvinen H., Kangasluoma J., Kerminen V.-M., Kolari P., Köster K., Köster E., Kulmala L., Kurten T., Laaksonen A., Lappalainen H.K., Laurila T., Lehtipalo K., Lihavainen H., Lohila A., Losoi M., Mäkelä A., Makkonen R., Mammarella I., Mikkonen S., Moisseev D., Ojala A., Petäjä T., Pihlatie M., Porcar-Castell A., Praplan A. P., Pulliainen J., Pumpanen J., Rantala P., Riekkola M.-L., Rissanen K., Romakkaniemi S., Ruiz-Jimenez J., Sarnela N., Schallhart S., Schiestl-Aalto P., Rinne J., Tuittila E.-S., Vehkamäki H., Vesala T., Viisanen Y., Virtanen A., Ylivinkka I., Hari P. & Kulmala M., The Center of Excellence in Atmospheric Science (2002–2019) — from molecular and biological processes to the global climate., Boreal Env. Res., 28, 15–80, 2023

Ma, Fangfang, Hong-Bin Xie, Rongjie Zhang, Lihao Su, Qi Jiang, Weihao Tang, Jingwen Chen, Morten Engsvang, Jonas Elm, and Xu-Cheng He:, Enhancement of Atmospheric Nucleation Precursors on Iodic Acid-Induced Nucleation: Predictive Model and Mechanism., Environmental Science & Technology 57, no. 17 , 6944-6954, 2023

Persad, G., Samset, B. H., Wilcox, L. J., Allen, R. J., Bollasina, M. A., Booth, B. B. B., Bonfils, C., Crocker, T., Joshi, M., Lund, M. T., Marvel, K., Merikanto, J., Nordling, K., Undorf, S., Van vuuren, D. P., Westervelt, D. M., & Zhao, A., Rapidly evolving aerosol emissions are a dangerous omission from near-term climate risk assessments, Environmental Research: Climate, 2(3), 032001, doi:10.1088/2752-5295/acd6af, 2023

Pfeifer, J., Mahfouz, N. G., Schulze, B. C., Mathot, S., Stolzenburg, D., Baalbaki, R., ... & Kirkby, J.:, Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber, Atmospheric Chemistry and Physics, 23(12), 6703-6718, 2023

Reichenberg, L., Ekholm, T., Boosma, T., Revenue and risk of variable renewable electricity investment, The cannibalization effect under high market penetration, Energy, 284, 128419, doi:10.1016/, 2023

Tang, J., Zhou, P., Miller, P.A., Schurgers, G., Gustafson, A., Makkonen, R., Yongshuo, H. F., Rinnan, R., High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols, npj Clim Atmos Sci, 6, 147, doi:10.1038/s41612-023-00463-7, 2023.

Tuppi, L., M. Ekblom, P. Ollinaho, and H. Järvinen, Simultaneous Optimization of 20 Key Parameters of the Integrated Forecasting System of ECMWF Using OpenIFS. Part I: Effect on Deterministic Forecasts, Mon. Wea. Rev., 151, 1325–1346, doi:10.1175/MWR-D-22-0209.1, 2023

Wilcox, L. J., Allen, R. J., Samset, B. H., Bollasina, M. A., Griffiths, P. T., Keeble, J., Lund, M. T., Makkonen, R., Merikanto, J., O'Donnell, D., Paynter, D. J., Persad, G. G., Rumbold, S. T., Takemura, T., Tsigaridis, K., Undorf, S., and Westervelt, D. M., The Regional Aerosol Model Intercomparison Project (RAMIP), Geosci. Model Dev., 16, 4451–4479, doi:10.5194/gmd-16-4451-2023, 2023

Zhou, P., Lu, Z., Keskinen, J.P., Zhang, Q., Lento, J., Bian, J., van Noije, T., Le Sager, P., Kerminen, V.M., Kulmala, M., Boy, M., and Makkonen. R., Simulating dust emissions and secondary organic aerosol formation over northern Africa during the mid-Holocene Green Sahara period, Climate of the Past, 19(12), pp.2445-2462, doi:10.5194/cp-19-2445-2023, 2023


Ahola, J., Raatikainen, T., Alper, M. E., Keskinen, J.-P., Kokkola, H., Kukkurainen, A., Lipponen, A., Liu, J., Nordling, K., Partanen, A.-I., Romakkaniemi, S., Räisänen, P., Tonttila, J., and Korhonen, H.: Technical note: Parameterising cloud base updraft velocity of marine stratocumuli, Atmos. Chem. Phys., 22, 4523–4537, doi:10.5194/acp-22-4523-2022, 2022.

Bergman, T., Makkonen, R., Schrödner, R., Swietlicki, E., Phillips, V. T. J., Le Sager, P., and van Noije, T.: Description and evaluation of a secondary organic aerosol and new particle formation scheme within TM5-MP v1.2, Geosci. Model Dev., 15, 683–713, doi:10.5194/gmd-15-683-2022, 2022.

Boy, M., Zhou, P., Kurtén, T., Chen, D., Xavier, C., Clusius, P., Roldin, P., Baykara, M., Pichelstorfer, L., Foreback, B., Bäck, J., Petäjä, T., Makkonen, R., Kerminen, V.-M., Pihlatie, M., Aalto, J., & Kulmala, M.: Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates. Npj Climate and Atmospheric Science, 5(1), doi:10.1038/s41612-022-00292-0, 2022.

Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, doi:10.5194/gmd-15-2973-2022, 2022.

Ekholm, T. & Baker, E; Multiple Beliefs, Dominance and Dynamic Consistency. Management Science 68 (1), doi:10.1287/mnsc.2020.3908, 2022.

Frogner, I.-L., Andrae, U., Ollinaho, P., Hally, A., Hämäläinen, K., Kauhanen, J., Ivarsson, K.-I., & Yazgi, D.: Model Uncertainty Representation in a Convection-Permitting Ensemble—SPP and SPPT in HarmonEPS, Monthly Weather Review, 150(4), 775–795, doi:10.1175/mwr-d-21-0099.1, 2022

Huard, D., Fyke, J., Capellán-Pérez, I., Matthews, H. D., & Partanen, A.-I.: Estimating the likelihood of GHG concentration scenarios from probabilistic Integrated Assessment Model simulations. Earth’s Future, 10, e2022EF002715, doi:10.1029/2022EF002715, 2022.

Jonas Olsson, Anita Verpe Dyrrdal, Erika Médus, Johan Södling, Svetlana Aņiskeviča, Karsten Arnbjerg-Nielsen, Eirik Førland, Viktorija Mačiulytė, Antti Mäkelä, Piia Post, Søren Liedke Thorndahl, Lennart Wern; Sub-daily rainfall extremes in the Nordic–Baltic region. Hydrology Research 1 June 2022; 53 (6): 807–824, doi:10.2166/nh.2022.119, 2022

Kouki, K., Räisänen, P., Luojus, K., Luomaranta, A., and Riihelä, A.: Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014, The Cryosphere, 16, 1007–1030, doi:10.5194/tc-16-1007-2022, 2022

Leinonen, V., Kokkola, H., Yli-Juuti, T., Mielonen, T., Kühn, T., Nieminen, T., Heikkinen, S., Miinalainen, T., Bergman, T., Carslaw, K., Decesari, S., Fiebig, M., Hussein, T., Kivekäs, N., Krejci, R., Kulmala, M., Leskinen, A., Massling, A., Mihalopoulos, N., Mulcahy, J. P., Noe, S. M., van Noije, T., O'Connor, F. M., O'Dowd, C., Olivie, D., Pernov, J. B., Petäjä, T., Seland, Ø., Schulz, M., Scott, C. E., Skov, H., Swietlicki, E., Tuch, T., Wiedensohler, A., Virtanen, A., and Mikkonen, S.: Comparison of particle number size distribution trends in ground measurements and climate models, Atmos. Chem. Phys., 22, 12873–12905, doi:10.5194/acp-22-12873-2022, 2022.

Lind, P., Belušić, D., Médus, E., Dobler, A., Pedersen, R. A., Wang,F., Matte,D., Kjellström, E., Landgren, O., Lindstedt, D., Christensen, O. B., Christensen, J. H. : Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model. Clim Dyn, doi:10.1007/s00382-022-06589-3, 2022

Lintunen, J., Rautiainen, A., & Uusivuori, J.: Which Is more Important, Carbon or Albedo? Optimizing Harvest Rotations for Timber and Climate Benefits in a Changing Climate, American Journal of Agricultural Economics, 104(1), 134-160, doi:10.1111/ajae.12219, 2022

Manninen, T., Anttila, K., Pirazzini, R., Räisänen, P., Leppänen, L., Kontu, A., and Peltoniemi, J.: Continuous bidirectional reflectance (BRF) measurement of snow using monochromatic camera, Cold Reg. Sci. Technol., 196, 103514, doi:10.1016/j.coldregions.2022.103514, 2022.

Médus, E., Thomassen, E. D., Belušić, D., Lind, P., Berg, P., Christensen, J. H., Christensen, O. B., Dobler, A., Kjellström, E., Olsson, J., and Yang, W.: Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling, Nat. Hazards Earth Syst. Sci., 22, 693–711, doi:10.5194/nhess-22-693-2022, 2022.

Neefjes, I., Laapas, M., Liu, Y., Médus, E., Miettunen, E., Ahonen, L., Quéléver, L., Aalto, J., Bäck, J., Kerminen, V.-M., Lampilahti, J., Luomao, K., Mäki, M., Mammarella, I., Petäjä, T., Räty, M., Sarnela, N., Ylivinkka, I., Hakala, S., Kulmala, M., Nieminen, T., Lintunen, A.; 25 years of atmospheric and ecosystem measurements in a boreal forest-Seasonal variation and responses to warm and dry years. Boreal environment research, 27: 1–31,, 2022.

Prank, M., Tonttila, J., Ahola, J., Kokkola, H., Kühn, T., Romakkaniemi, S., and Raatikainen, T.: Impacts of marine organic emissions on low-level stratiform clouds – a large eddy simulator study, Atmos. Chem. Phys., 22, 10971–10992, doi:10.5194/acp-22-10971-2022, 2022

Raatikainen, T., Prank, M., Ahola, J., Kokkola, H., Tonttila, J., and Romakkaniemi, S.: The effect of marine ice-nucleating particles on mixed-phase clouds, Atmos. Chem. Phys., 22, 3763–3778, doi:10.5194/acp-22-3763-2022, 2022.

Räisänen, P., Merikanto, J., Makkonen, R., Savolahti, M., Kirkevåg, A., Sand, M., Seland, Ø., and Partanen, A.-I.: Mapping the dependence of black carbon radiative forcing on emission region and season, Atmos. Chem. Phys., 22, 11579–11602, doi:10.5194/acp-22-11579-2022, 2022.


Backman, L., Aalto, T., Lehtonen, I., Thölix, L., Vanha-Majamaa, I., Venäläinen A.: Climate change increases the risk of forest fires In: Aalto, J., Venäläinen, A. (eds.) Climate change and forest management affect forest fire risk in Fennoscandia, Reports 2021:3, Finnish Meteorological Institute, Helsinki, pp. 66-91,, 2021.

Blichner, S. M., Sporre, M. K., Makkonen, R., and Berntsen, T. K.: Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2: comparison to observations and climate impacts, Geosci. Model Dev., 14, 3335–3359, doi:10.5194/gmd-14-3335-2021, 2021.

Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H. and Prather, K. A.: Constraining the atmospheric limb of the plastic cycle, PNAS, 118(16), e2020719118, doi:10.1073/pnas.2020719118, 2021.

Brown, H., Liu, X., Pokhrel, R., Murphy, S., Lu, Z., Saleh, R., Mielonen, T., Kokkola, K., Bergman, T., Myhre, G., Skeie, R. B., Watson-Paris, D., Stier, P., Johnson, B., Bellouin, N., Schulz, M., Vakkari, V., Beukes, J. P., Gideon van Zyl, P., Liu S., and Chand, D.: Biomass burning aerosols in most climate models are too absorbing. Nat. Commun., 12, 277, doi:10.1038/s41467-020-20482-9, 2021.

Checa-Garcia, R., Balkanski, Y., Albani, S., Bergman, T., Carslaw, K., Cozic, A., Dearden, C., Marticorena, B., Michou, M., van Noije, T., Nabat, P., O'Connor, F. M., Olivié, D., Prospero, J. M., Le Sager, P., Schulz, M., and Scott, C.: Evaluation of natural aerosols in CRESCENDO Earth system models (ESMs): mineral dust, Atmos. Chem. Phys., 21, 10295–10335, doi:10.5194/acp-21-10295-2021, 2021.

Esau, I., Bobylev, L., Donchenko, V., Gnatiuk, N., Lappalainen, H.K., Konstantinov, P., Kulmala, M., Mahura, A., Makkonen, R., Manvelova, A., Miles, V., Petäjä, T., Poutanen, P., Fedorov, R., Varentsov, M., Wolf, T., Zilitinkevich, S. and Baklanov, A: An enhanced integrated approach to knowledgeable high-resolution environmental quality assessment, Environmental Science & Policy, Volume 122, Pages 1–13, ISSN 1462-9011, doi:10.1016/j.envsci.2021.03.020, 2021.

Hildén, M., Björklund, M., Ekholm, T., Ekroos, A., Huttunen, S., Hyytiäinen, K., Kokko, K., Lähteenmäki-Uutela, A., Mehling, M., Perrels, A., Seppälä, J., Soimakallio, S., Tikkakoski, P., and Toivonen, E.: Mahdollisuudet vahvistaa ilmastolakia uusilla keinoilla, Valtioneuvoston selvitys- ja tutkimustoiminnan julkaisusarja, 2021:5,, 2021.

Manninen, T., Anttila, K., Jääskeläinen, E., Riihelä, A., Peltoniemi, J., Räisänen, P., Lahtinen, P., Siljamo, N., Thölix, L., Meinander, O., Kontu, A., Suokanerva, H., Pirazzini, R., Suomalainen, J., Hakala, T., Kaasalainen, S., Kaartinen, H., Kukko, A., Hautecoeur, O., and Roujean, J.-L.: Effect of small-scale snow surface roughness on snow albedo and reflectance, The Cryosphere, 15, 793–820, doi:10.5194/tc-15-793-2021, 2021.

Merikanto, J., Nordling, K., Räisänen, P., Räisänen, J., O'Donnell, D., Partanen, A.-I., and Korhonen, H.: How Asian aerosols impact regional surface temperatures across the globe, Atmos. Chem. Phys., 21, 5865–5881, doi:10.5194/acp-21-5865-2021, 2021.

Ollinaho, P., Carver, G. D., Lang, S. T. K., Tuppi, L., Ekblom, M., and Järvinen, H.: Ensemble prediction using a new dataset of ECMWF initial states – OpenEnsemble 1.0, Geosci. Model Dev., 14, 2143–2160, doi:10.5194/gmd-14-2143-2021, 2021.

Olsson, J., Du, Y., An, D., Uvo, C. B., Sörensen, J., Toivonen, E., Belušić, D., and Dobler, A.: An Analysis of (Sub-)Hourly Rainfall in Convection-Permitting Climate Simulations Over Southern Sweden From a User’s Perspective, Front. Earth Sci., 9, 516, doi:10.3389/feart.2021.681312, 2021.

Sparrow, S., Bowery, A., Carver, G. D., Köhler, M. O., Ollinaho, P., Pappenberger, F., Wallom, D., and Weisheimer, A.: OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting, Geosci. Model Dev., 14, 3473–3486, doi:10.5194/gmd-14-3473-2021, 2021.

Tonttila, J., Afzalifar, A., Kokkola, H., Raatikainen, T., Korhonen, H., and Romakkaniemi, S.: Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA, Atmos. Chem. Phys., 21, 1035–1048, doi:10.5194/acp-21-1035-2021, 2021.

van Noije, T., Bergman, T., Le Sager, P., O'Donnell, D., Makkonen, R., Gonçalves-Ageitos, M., Döscher, R., Fladrich, U., von Hardenberg, J., Keskinen, J.-P., Korhonen, H., Laakso, A., Myriokefalitakis, S., Ollinaho, P., Pérez García-Pando, C., Reerink, T., Schrödner, R., Wyser, K., and Yang, S.: EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6 , Geosci. Model Dev., 14, 5637–5668, doi:10.5194/gmd-14-5637-2021, 2021.


Ahola, J., Korhonen, H., Tonttila, J., Romakkaniemi, S., Kokkola, H., and Raatikainen, T.: Modelling mixed-phase clouds with the large-eddy model UCLALES–SALSA, Atmos. Chem. Phys., 20, 11639–11654, doi:10.5194/acp-20-11639-2020, 2020.

Allen, R. J., Turnock, S., Nabat, P., Neubauer, D., Lohmann, U., Olivié, D., Oshima, N., Michou, M., Wu, T., Zhang, J., Takemura, T., Schulz, M., Tsigaridis, K., Bauer, S. E., Emmons, L., Horowitz, L., Naik, V., van Noije, T., Bergman, T., Lamarque, J.-F., Zanis, P., Tegen, I., Westervelt, D. Tonttila, J., Afzalifar, A., Kokkola, H., Raatikainen, T., Korhonen, H., and Romakkaniemi, S.: Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA, Atmos. Chem. Phys., 21, 1035–1048,, 2021.M., Le Sager, P., Good, P., Shim, S., O'Connor, F., Akritidis, D., Georgoulias, A. K., Deushi, M., Sentman, L. T., John, J. G., Fujimori, S., and Collins, W. J.: Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., 20, 9641–9663, doi:10.5194/acp-20-9641-2020, 2020.

Belušić, D., de Vries, H., Dobler, A., Landgren, O., Lind, P., Lindstedt, D., Pedersen, R. A., Sánchez-Perrino, J. C., Toivonen, E., van Ulft, B., Wang, F., Andrae, U., Batrak, Y., Kjellström, E., Lenderink, G., Nikulin, G., Pietikäinen, J.-P., Rodríguez-Camino, E., Samuelsson, P., van Meijgaard, E., and Wu, M.: HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales, Geosci. Model Dev., 13, 1311–1333, doi:10.5194/gmd-13-1311-2020, 2020.

Cornwell, G. C., Sultana, C. M., Prank, M., Cochran, R. E., Hill, T. C. J., Schill, G. P., DeMott, P. J., Mahowald, N. and Prather, K. A.: Ejection of Dust From the Ocean as a Potential Source of Marine Ice Nucleating Particles, J. Geophys. Res. Atmos., 125(24), 1–12, doi:10.1029/2020jd033073, 2020.

Ekblom, M. , Tuppi, L. , Shemyakin, V. , Laine, M. , Ollinaho, P. , Haario, H. and Järvinen, H.: Algorithmic tuning of spread‐skill relationship in ensemble forecasting systems. Q.J.R. Meteorol. Soc., 146, 598-612, doi:10.1002/qj.3695, 2020.

Ekholm, T. and Virasjoki, V.: Pricing and Competition with 100% Variable Renewable Energy and Storage, The Energy Journal, Vol. 41, SI1, 215-231, doi:10.5547/01956574.41.SI1.tekh, 2020.

Ekholm, T.: Optimal forest rotation under carbon pricing and forest damage risk, Forest Policy and Economics, 115, 10213, doi:10.1016/j.forpol.2020.102131, 2020.

Goodwin, P., Leduc, M., Partanen, A.-I., Matthews, H. D., and Rogers, A.: A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0, Geosci. Model Dev., 13, 5389–5399, doi:10.5194/gmd-13-5389-2020, 2020.

Kulmala M., Ezhova E., Kalliokoski T., Noe S., Vesala T., Lohila A., Liski J., Makkonen R., Bäck J., Petäjä T. & Kerminen V.-M.: CarbonSink+ — Accounting for multiple climate feedbacks from forests. Boreal Env. Res. 25: 145–159, 2020.

Laakso, A., Snyder, P. K., Liess, S., Partanen, A.-I., and Millet, D. B.: Differing precipitation response between solar radiation management and carbon dioxide removal due to fast and slow components, Earth Syst. Dynam., 11, 415–434, doi:10.5194/esd-11-415-2020, 2020.

Lind, P., Belušić, D., Christensen, O., Dobler, A., Kjellström, E., Landgren, O., Lindstedt, D., Matte, D., Pedersen, R., Toivonen, E., and Wang, F.: Benefits and added value of convection-permitting climate modeling over Fenno-Scandinavia, Clim. Dyn., doi:10.1007/s00382-020-05359-3, 2020.

Petäjä, T., Ganzei, K.S., Lappalainen, H.K., Tabakova, K., Makkonen, R., Räisänen, J., Chalov, S., Kulmala, M., Zilitinkevich, S., Ya Baklanov, P., Shakirov, R.B., Mishina, N.V., Egidarev, E.G. & Kondrat’ev, I.I.: Research agenda for the Russian Far East and utilization of multi-platform comprehensive environmental observations, International Journal of Digital Earth, doi:10.1080/17538947.2020.1826589, 2020.

Sokka, L., Lindroos, T.J., Ekholm, T. and Koljonen, T.: Impacts of climate change and its mitigation in the Barents region, Cogent Environmental Science 6:1, 1805959, doi:10.1080/23311843.2020.1805959, 2020.

Sporre, M. K., Blichner, S. M., Schrödner, R., Karset, I. H. H., Berntsen, T. K., van Noije, T., Bergman, T., O'Donnell, D., and Makkonen, R.: Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models, Atmos. Chem. Phys., 20, 8953–8973, doi:10.5194/acp-20-8953-2020, 2020.

Tuppi, L., Ollinaho, P., Ekblom, M., Shemyakin, V., and Järvinen, H.: Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example, Geosci. Model Dev., 13, 5799–5812, doi:10.5194/gmd-13-5799-2020, 2020.

Wilcox, L. J., Liu, Z., Samset, B. H., Hawkins, E., Lund, M. T., Nordling, K., Undorf, S., Bollasina, M., Ekman, A. M. L., Krishnan, S., Merikanto, J., and Turner, A. G.: Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions, Atmos. Chem. Phys., 20, 11955–11977, doi:10.5194/acp-20-11955-2020, 2020.


Bahramvash Shams, S., Walden, V. P., Petropavlovskikh, I., Tarasick, D., Kivi, R., Oltmans, S., Johnson, B., Cullis, P., Sterling, C. W., Thölix, L., and Errera, Q.: Variations in the vertical profile of ozone at four high-latitude Arctic sites from 2005 to 2017, Atmos. Chem. Phys., 19, 9733–9751, doi:10.5194/acp-19-9733-2019, 2019.

Chavaillaz, Y., Roy, P., Partanen, A.-I., Da Silva, L., Bresson, E., Mengis, N., Chaumont, D., Matthews, H. D.: Exposure to excessive heat and impacts on labour productivity linked to cumulative CO2 emissions, Sci. Rep., 9, 13711, doi: 10.1038/s41598-019-50047-w, 2019.

Cuevas, E., P. M. Romero-Campos, N. Kouremeti, S. Kazadzis, P. Räisänen, R. D. García, A. Barreto, C. Guirado-Fuentes, R. Ramos, C. Toledano, F. Almansa, and J. Gröbner: Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from long-term (2005-2015) 1-min synchronous measurements. Atmos. Meas. Tech., 12, 4309-4337, doi:10.5194/amt-12-4309-2019, 2019.

Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A., Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G., Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije, T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari, S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schrödner, R., Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmos. Chem. Phys., 19, 8591-8617, doi:10.5194/acp-19-8591-2019, 2019.

Fiedler, S., S. Kinne, W. T. K. Huang, P. Räisänen, D. O'Donnell, N. Bellouin, P. Stier, J. Merikanto, T. van Noije, R. Makkonen, and U. Lohmann: Anthropogenic aerosol forcing - insights from multiple estimates from aerosol-climate models with reduced complexity. Atmos. Chem. Phys., 19, 6821-6841, doi:10.5194/acp-19-6821-2019, 2019.

Henriksson, S. V., Sundström, A.-M., Josipovic, M., van Zyl, P. G, and Beukes, J. P.: Simulating effects of aerosols on rainfall in southern Africa, Air Quality, Atmosphere & Health, 12, 1-10, doi:10.1007/s11869-018-0619-8, 2019.

Im, U., Christensen, J. H., Nielsen, O.-K., Sand, M., Makkonen, R., Geels, C., Anderson, C., Kukkonen, J., Lopez-Aparicio, S., and Brandt, J.: Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic, Atmos. Chem. Phys., 19, 12975–12992, doi:10.5194/acp-19-12975-2019, 2019.

Nordling, K., H. Korhonen, P. Räisänen, M. E. Alper, P. Uotila, D. O'Donnell, and J. Merikanto: Role of climate model dynamics in estimated climate responses to anthropogenic aerosols. Atmos. Chem. Phys., 19, 9969--9987, doi:10.5194/acp-19-9969-2019, 2019.

Ruosteenoja, K., Räisänen, P., Devraj, S., Garud, S.S. and Lindfors, A. V.: Future changes in incident surface solar radiation and contributing factors in India in CMIP5 climate model simulations. J. Appl. Meteor. Climatol., 58, 19-35, doi:10.1175/JAMC-D-18-0013.1, 2019.

Räisänen, P. and A. V. Lindfors, 2019: On the computation of apparent direct solar radiation. J. Atmos. Sci., 76, 2761-2780, doi: 10.1175/jas-d-19-0030.1, 2019.

Salminen-Paatero, S., Thölix, L. E., Kivi, R., and Paatero, J.: Nuclear contamination sources in surface air of Finnish Lapland in 1965–2011 studied by means of 137Cs, 90Sr, and total beta activity, Environmental Science and Pollution Research, 26, 21, 21511-21523, doi:10.1007/s11356-019-05451-0, 2019.

Sporre, M. K., Blichner, S. M., Karset, I. H. H., Makkonen, R., and Berntsen, T. K.: BVOC–aerosol–climate feedbacks investigated using NorESM, Atmos. Chem. Phys., 19, 4763-4782, doi:10.5194/acp-19-4763-2019, 2019.

Toivonen, E., Hippi, M., Korhonen, H., Laaksonen, A., Kangas, M., and Pietikäinen, J.-P.: The road weather model RoadSurf (v6.60b) driven by the regional climate model HCLIM38: evaluation over Finland, Geosci. Model Dev., 12, 3481–3501, doi:10.5194/gmd-12-3481-2019, 2019.


Doulgeris, K. M., Brus, D., Raatikainen, T., and Kerminen, V.-M.: A Finnish Meteorological Institute–Aerosol Cloud Interaction Tube (FMI–ACIT): Experimental setup and tests of proper operation, J. Chem. Phys., 149, 124201, doi:10.1063/1.5037298, 2018.

Gierens, R.T., Henriksson, S., Josipovic, M., Vakkari, V., van Zyl, P. G., Beukes, P., Wood, C., and O'Connor, E.: Observing continental boundary-layer structure and evolution over the South African savannah using a ceilometer, Theor. Appl. Climatol., doi:10.1007/s00704-018-2484-7, 2018.

Henriksson, S. V., Interannual oscillations and sudden shifts in observed and modeled climate, Atmos. Sci. Lett. 19, e850, doi:10.1002/asl.850, 2018.

Hienola, A., Partanen, A.-I., Pietikäinen, J.-P., O'Donnell, Korhonen, H., Matthews, H. D., and Laaksonen, A.: The impact of aerosol emissions on the 1.5 °C pathways, Environ. Res. Lett., 13, 044011, doi:10.1088/1748-9326/aab1b2, 2018.

Hooda, R. K., Kivekäs, N., O'Connor, E. J., Collaud Coen, M., Pietikäinen, J.‐P., Vakkari, V., Backman, J., Henriksson, S. V., Asmi, E., Komppula, M., Korhonen, H., Hyvärinen, A.-P., & Lihavainen, H.: Driving factors of aerosol properties over the foothills of central Himalayas based on 8.5 years continuous measurements. Journal of Geophysical Research: Atmospheres, 123, 13,421–13,442, doi:10.1029/2018JD029744, 2018.

Kestilä, A., Nordling, K., Miikkulainen, V., Kaipio, M., Tikka, T., Salmi, M., Auer, A., Leskelä, M. and Ritala, M.: Towards space-grade 3D-printed, ALD-coated small satellite propulsion components for fluidics, Additive Manufacturing, 22, 31-37, doi:10.1016/j.addma.2018.04.023, 2018.

Kirkevåg, A., Grini, A., Olivié, D., Seland, Ø., Alterskjær, K., Hummel, M., Karset, I. H. H., Lewinschal, A., Liu, X., Makkonen, R., Bethke, I., Griesfeller, J., Schulz, M., and Iversen, T.: A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo, Geosci. Model Dev., 11, 3945-3982, doi:10.5194/gmd-11-3945-2018, 2018.

Lakkala, K., Redondas, A., Meinander, O., Thölix, L., Hamari, B., Almansa, A. F., Carreno, V., García, R. D., Torres, C., Deferrari, G., Ochoa, H., Bernhard, G., Sanchez, R., and de Leeuw, G.: UV measurements at Marambio and Ushuaia during 2000–2010, Atmos. Chem. Phys., 18, 16019-16031, doi:10.5194/acp-18-16019-2018, 2018.

Mallick, K., Toivonen, E., Trebs, I., Boegh, E., Cleverly, J., Eamus, D., Koivusalo, H., Drewry, D., Arndt, S. K., Griebel, A., Beringer, J., and Garcia, M.: Bridging thermal infrared sensing and physically‐based evapotranspiration modeling: From theoretical implementation to validation across an aridity gradient in Australian ecosystems, Water Resour. Res., 54, doi:10.1029/2017wr021357, 2018.

Mengis, N., Partanen, A.-I., Jalbert, J., Matthews, H. D.: 1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing, Sci. Rep., 8, 5381, doi:10.1038/s41598-018-24241-1, 2018.

Mielonen, T., Hienola, A., Kühn, T., Merikanto, J., Lipponen, A., Bergman, T., Korhonen, H., Kolmonen, P., Sogacheva, L., Ghent, D., Pitkänen, M. R., Arola, A., de Leeuw, G., and Kokkola, H.: Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA. Atmosphere, 9(5), 180, doi:10.3390/atmos9050180, 2018.

Määttänen, A., Merikanto, J., Henschel, H., Duplissy, J., Makkonen, R., Ortega, I. K., and Vehkamäki, H.: New parameterizations for neutral and ion-induced sulfuric acid-water particle formation in nucleation and kinetic regimes. Journal of Geophysical Research: Atmospheres, 1269–1296, doi:10.1002/2017jd027429, 2018.

Partanen, A.-I., Landry, J.-S., and Matthews, H. D.: Climate and health implications of future aerosol emission scenarios, Environ. Res. Lett., 13, 024028, doi:10.1088/1748-9326/aaa511, 2018.

Pietikäinen, J.-P., Markkanen, T., Sieck, K., Jacob, D., Korhonen, J., Räisänen, P., Gao, Y., Ahola, J., Korhonen, H., Laaksonen, A., and Kaurola, J.: The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes, Geosci. Model Dev., 11, 1321-1342, doi:10.5194/gmd-11-1321-2018, 2018.

Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., and Peltola, H.: Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dyn., 50, 1177-1192, doi:10.1007/s00382-017-3671-4, 2018.

Stevens, R. G., Loewe, K., Dearden, C., Dimitrelos, A., Possner, A., Eirund, G. K., Raatikainen, T., Hill, A. A., Shipway, B. J., Wilkinson, J., Romakkaniemi, S., Tonttila, J., Laaksonen, A., Korhonen, H., Connolly, P., Lohmann, U., Hoose, C., Ekman, A. M. L., Carslaw, K. S., and Field, P. R.: A model intercomparison of CCN-limited tenuous clouds in the high Arctic, Atmos. Chem. Phys., 18, 11041-11071, doi:10.5194/acp-18-11041-2018, 2018.

Thölix, L., Karpechko, A., Backman, L., and Kivi, R.: Linking uncertainty in simulated Arctic ozone loss to uncertainties in modelled tropical stratospheric water vapour, Atmos. Chem. Phys., 18, 15047-15067, doi:10.5194/acp-18-15047-2018, 2018.

Tyrrell, N. L., Karpechko, A. Y., and Räisänen, P.: The influence of Eurasian snow extent on the northern extratropical stratosphere in a QBO resolving model. J. Geophys. Res. Atmos., 123, 315-328, doi:10.1002/2017jd027378, 2018.

Varmuza K., Filzmoser P., Hoffmann I., Walach, J., Cottin, H., Fray, N., Briois, C., Modica, P., Bardyn, A., Silén, J., Siljeström, S., Stenzel, O., Kissel, J., Hilchenbach, M.: Significance of variables for discrimination: Applied to the search of organic ions in mass spectra measured on cometary particles., Journal of Chemometrics, 32, e3001, doi:10.1002/cem.3001, 2018.


Brus, D., Škrabalová, L., Herrmann, E., Olenius, T., Trávničková, T., Makkonen, U., and Merikanto, J.: Temperature-Dependent Diffusion of H2SO4 in Air at Atmospherically Relevant Conditions: Laboratory Measurements Using Laminar Flow Technique. Atmosphere, 8(7), 132, doi:10.3390/atmos8070132, 2017.

Gregow H.,Laaksonen A., and Alper M.E.: Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010, Scientific Reports, 7, doi:10.1038/srep46397, 2017.

Haapanala, P., Räisänen, P., McFarquhar, G. M., Tiira, J., Macke, A., Kahnert, M., DeVore, J., and Nousiainen, T.: Disk and circumsolar radiances in the presence of ice clouds, Atmos. Chem. Phys., 17, 6865-6882, doi:10.5194/acp-17-6865-2017, 2017.

Landry, J.-S., Partanen, A.-I., and Matthews, H. D.: Carbon cycle and climate effects of forcing from fire-emitted aerosols, Environ. Res. Lett., 12, 025002, doi:10.1088/1748-9326/aa51de, 2017.

Leutbecher, M., Lock, S.-J., Ollinaho, P., Lang, S. T. K., Balsamo, G., Bechtold, P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E., English, S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan, R. J., Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart, S., Sandu, I., Smolarkiewicz, P. K., Subramanian, A., Vitart, F., Wedi, N. and Weisheimer, A.: Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Q.J.R. Meteorol. Soc, 143: 2315–2339, doi:10.1002/qj.3094, 2017.

Matthews, H. D., Landry, J.-S., Partanen, A.-I., Allen, M., Eby, M., Friedlingstein, P., and Zickfeld, K.: Estimating Carbon Budgets for Ambitious Climate Targets, Curr. Clim. Change Rep., doi:10.1007/s40641-017-0055-0, 2017.

Ollinaho, P., Lock, S. J., Leutbecher, M., Bechtold, P., Beljaars, A., Bozzo, A., ... & Sandu, I.: Towards process‐level representation of model uncertainties: stochastically perturbed parametrizations in the ECMWF ensemble. Quarterly Journal of the Royal Meteorological Society, 143(702), 408-422, 1, doi:10.1002/qj.2931, 2017.

Partanen, A.-I., Leduc, M., and Matthews, H. D.: Seasonal climate change patterns due to cumulative CO2 emissions, Environ. Res. Lett., 12, 075002, doi:10.1088/1748-9326/aa6eb0, 2017.

Raatikainen, T., Brus, D., Hooda, R. K., Hyvärinen, A.-P., Asmi, E., Sharma, V. P., Arola, A., and Lihavainen, H.: Size-selected black carbon mass distributions and mixing state in polluted and clean environments of northern India, Atmos. Chem. Phys., 17, 371-383, doi:10.5194/acp-17-371-2017, 2017.

Rontu, L., Gleeson, E., Räisänen, P., Nielsen, K. P., Savijärvi, H., and Sass, B. H.: The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models, Adv. Sci. Res., 14, 195-215, doi:10.5194/asr-14-195-2017, 2017.

Räisänen, P., Makkonen, R., Kirkevåg, A., and Debernard, J. B.: Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model, The Cryosphere, 11, 2919-2942, doi:10.5194/tc-11-2919-2017, 2017.

Tonttila, J., Maalick, Z., Raatikainen, T., Kokkola, H., Kühn, T., and Romakkaniemi, S.: UCLALES–SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation, Geosci. Model Dev., 10, 169-188, doi:10.5194/gmd-10-169-2017, 2017.