Science news archive

« Back

Significant year-to-year variations in the fluxes in northern latitudes

Significant year-to-year variations in the fluxes in northern latitudes

Methane fluxes in the high northern latitudes for 2005 – 2013 are estimated using a Bayesian atmospheric inversion.

We present methane (CH4) flux estimates for 2005 to 2013 from a Bayesian inversion focusing on the high northern latitudes (north of 50˚N). Our inversion is based on atmospheric transport modelled by the Lagrangian particle dispersion model FLEXPART and CH4 observations from17 in situ and five discrete flask-sampling sites distributed over northern North America and Eurasia. CH4 fluxes are determined at monthly temporal resolution and on a variable grid with maximum resolution of 1˚x1˚. Our inversion finds a CH4 source from the high northern latitudes of 82 to 84 Tg/yr, constituting about 15% of the global total, compared to 64 to 68 Tg/yr ( about12 %) in the prior estimates.

For northern North America, we estimate a mean source of 16.6 to 17.9 Tg/yr, which is dominated by fluxes in the Hudson Bay Lowlands (HBL) and western Canada, specifically the province of Alberta. Our estimate for the HBL, of 2.7 to 3.4 Tg/yr, is close to the prior estimate (which includes wetland fluxes from the land surface model, LPXBern) and to other independent inversion estimates. However, our estimate for Alberta, of 5.0 to 5.8 Tg/yr, is significantly higher than the prior (which also includes anthropogenic sources from the EDGAR-4.2FT2010 inventory). Since the fluxes from this region persist throughout the winter, this may signify that the anthropogenic emissions are underestimated. For northern Eurasia, we find a mean source of 52.2 to 55.5 Tg/yr, with a strong contribution from fluxes in the Western Siberian Lowlands (WSL) for which we estimate a source of 19.3 to 19.9 Tg/yr. Over the 9-year inversion period, we find significant year-to-year variations in the fluxes, which in North America, and specifically in the HBL, appear to be driven at least in part by soil temperature, while in the WSL, the variability is more dependent on soil moisture. Moreover, we find significant positive trends in the CH4 fluxes in North America of 0.38 to 0.57 Tg/yr, and northern Eurasia of 0.76 to 1.09 Tg/yr. In North America, this could be due to an increase in soil temperature, while in North Eurasia, specifically Russia, the trend is likely due, at least in part, to an increase in anthropogenic sources.

More information:

Head of Group Tuula Aalto, tel. +358 29 539 5406, tuula.aalto@fmi.fi

R. L. Thompson, M. Sasakawa, T. Machida, T. Aalto, D. Worthy, J. V. Lavric, C. Lund Myhre and A. Stohl. Methane fluxes in the high northern latitudes for 2005 – 2013 estimated using a Bayesian atmospheric inversion. Atmos. Chem. Phys., doi:10.5194/acp-2016-660, 2017

http://www.atmos-chem-phys.net/17/3553/2017/acp-17-3553-2017-discussion.html

 


Research

The Finnish Meteorological Institute is a leading expert in meteorology, air quality, climate change, earth observation, marine and arctic research areas. FMI is in a unique position to study various themes of climate change in the Northern context.

 

High-quality observational data and research is utilized to develop services to benefit our everyday life. Visible examples are improvement of weather forecasts, development of new expert and warning services as well as applications of the newest research results.