Antarctic Research

The Polar Meteorology and Climatology group studies Antarctic weather and climate, snow, ice, and the ocean. The work has been going on since early 1990s, and is presently funded by the Academy of Finland via the project ‘Antarctic Meteorology and its Interaction with the Cryosphere and Ocean' (AMICO). The aim of the project is to achieve better understanding on the interaction processes between atmosphere, snow, ice and sea in Antarctica, and based on this develop better ways to describe these processes in the climate and weather models.

The research focuses on the following issues:

  • Surface heat budget on the continental ice sheet, ice shelves, and sea ice

  • Snow grain structure and surface albedo

  • Cloud radiative forcing on shortwave and longwave radiation

  • Vertical profile of air temperature and humidity

  • Stable boundary layer and gravity waves

  • Katabatic winds and their interaction with the air temperature distribution

  • Wind forcing on sea ice drift

  • Atmospheric moisture budget over the Antarctica and Southern Ocean

  • Synoptic and mesoscale cyclones and their interaction with the large-scale atmospheric circulation

Field campaigns

Newest technology, among others Remotely Piloted Aircraft Systems, is applied in the observations. The analysis of observations is supported by various numerical modelling techniques. The latest field campaigns include:

  • Weddell Sea: summers 1995-1996, and 2004-2005, winter 2013

  • Finnish Aboa station in Dronning Maud Land: summers 2006-2007, 2007-2008, 2008-2009, 2010-2011, and 2014-2015

  • British Rothera station: summer-autumn 2010

Main collaborators

Alfred Wegener Institute, British Antarctic Survey, University of Helsinki, Texas A & M University, University of Melbourne, University of South Florida, Shanghai Jiao Tong University, Meteo France, Met Norway, NorthWest Research Associates, Smith College, Technical University of Braunschweig, Wageningen University.

More information: Timo Vihma / Finnish Meteorological Institute

Finnish Antarctic station Aboa in Dronning Maud Land (photo: Timo Vihma).
Weather mast on the glacier close to Aboa (photo: Timo Vihma).
Priit Tisler and Marius Jonassen launching a Remotely Piloted Aircraft System on sea ice in the Weddell Sea in winter 2013 (photo Mario Hoppmann).
Ice bergs disintegrated from the Wilkins Ice Shelf, seen from the AWI Polar 5 aircraft in February 2010 (photo Timo Vihma).

Recent publications

Sterk, H. A. M., G. J. Steeneveld, T. Vihma, P. S. Anderson, F. C. Bosveld, and A. A. M. Holtslag (2015). Modelling stable boundary layers with low winds over snow Part I: A WRF model evaluation. Q. J. R. Meteorol. Soc, in press.

Uotila, P., P. R. Holland, T. Vihma, S. J. Marsland, and N. Kimura (2014), Is realistic Antarctic sea ice extent in climate models the result of excessive ice drift?, Ocean Modell., 2014, 79, 33-42,

Välisuo, I., T. Vihma, and J.C. King (2014), Surface energy budget on Larsen and Wilkins ice shelves in the Antarctic Peninsula: results based on reanalyses in 1989-2010, The Cryosphere, 8, 1519–1538, 2014, doi:10.5194/tc-8-1519-2014.

Valkonen, T., T. Vihma, M. Johansson, and J. Launiainen (2014). Atmosphere - sea ice interaction in early summer in the Antarctic: evaluation and challenges of a regional atmospheric model. Q. J. R. Meteorol. Soc., 140, 1536–1551, DOI:10.1002/qj.2237.

Nygård, T., T. Valkonen, and T. Vihma (2013). Antarctic Low-Tropospheric Humidity Inversions: 10-year Climatology, J. Climate, 26, 5205-5219, doi:10.1175/JCLI-D-12-00446.1.

Kouznetsov, R., P. Tisler, T. Palo, and T. Vihma (2013). An evidence of very shallow summertime katabatic flows in Dronning Maud Land, Antarctica. J. Appl. Meteorol. Climatol., 52, 164-168.

Tastula, E.-M., T. Vihma, E. L. Andreas, and B. Galperin (2013), Validation of the diurnal cycles in atmospheric reanalyses over Antarctic sea ice, J. Geophys. Res. Atmos., 118, 4194–4204, doi:10.1002/jgrd.50336.

Uotila, P., T. Vihma, and M. Tsukernik (2013). Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophys. Res. Lett., 40, 3237–3241, doi:10.1002/grl.50560.

Jacobs, S., A. B. Pezza, V. Barras, J. Bye, and T. Vihma (2013). An analysis of the meteorological variables leading to apparent temperature in Australia: present climate, trends, and global warming simulations, Global and Planetary Change, 107, 145–156.

Tastula, E.-M, T. Vihma, and E. L. Andreas (2012), Modeling of the Atmospheric Boundary Layer over Antarctic Sea Ice in Autumn and Winter, Mon. Wea. Rev., 140, 3919–3935. doi:

Tastula, E.-M., and T. Vihma (2011). WRF model experiments on the Antarctic atmosphere in winter. Monthly Weather Review., 139, 1279-1291, doi:10.1175/2010MWR3478.1.

Uotila, P., T. Vihma, A. B. Pezza, I. Simmonds, K. Keay, and A. H. Lynch (2011), Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data, Journal of Geophysical Research, 116, D07109, doi:10.1029/2010JD015358.

Vihma, T., O.-P. Mattila, R. Pirazzini, and M. M. Johansson. (2011). Spatial and temporal variability in summer snow pack in Dronning Maud Land, Antarctica. The Cryosphere., 5, 187–201, doi:10.5194/tc-5-187-2011.

Vihma, T. (2011). Atmosphere-snow/ice interactions. In: V.P. Singh, P. Singh, U.K. Haritashya (Eds.) Encyclopedia of snow, ice and glaciers. Springer, Dortrecht, The Netherlands, p. 66-75.

Stössel, A., Z. Zhang, and T. Vihma (2011), The effect of alternative real-time wind forcing on Southern Ocean sea ice simulations, Journal of Geophysical Research, 116, C11021, doi:10.1029/2011JC007328.

Vihma, T., E. Tuovinen, and H. Savijärvi (2011), Interaction of katabatic winds and near-surface temperatures in the Antarctic, Journal of Geophysical Research, 116, D21119, doi:10.1029/2010JD014917.

Savijärvi, H. (2011). Antarctic local wind dynamics and polynya effects on the Adelie Land coast. Q. J. R. Meteorol. Soc., 137, 8, p. 1804-1811

Valkonen, T., T. Vihma, S. Kirkwood, and M. M. Johansson (2010). Fine-scale model simulation of gravity waves generated by Basen nunatak in Antarctica. Tellus, 62A, 319–332.

Savijärvi, H. (2009), Stable boundary layer: parameterizations for local and larger scales. Q. J. R. Meteorol. Soc., 135, 914-921.

Vihma, T., M. M. Johansson, and J. Launiainen (2009). Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer. J. Geophys. Res., 114, C04019, doi:10.1029/2008JC004995.

Vihma, T., J. Launiainen, and R. Pirazzini (2009). 20-years of Finnish research on boundary-layer meteorology and air-ice-sea interaction in the Antarctic, Geophysica, 45(1-2), 7-26.

Pirazzini, R., 2009. Challenges in snow and ice albedo parameterizations, Geophysica, 45(1-2), 41-62.

Lüpkes, C., T. Vihma, G. Birnbaum, and U. Wacker (2008), Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night, Geophys. Res. Lett., 35, L03805, doi:10.1029/2007GL032461.

Pirazzini, R. (2008). Factors controlling the surface energy budget over snow and ice (PhD Thesis). Finnish Meteorological Institute Contributions, 75, 48 p. + 6 appendices.

Pirazzini, R., and P. Räisänen (2008). A method to account for surface albedo heterogeneity in single column radiative transfer calculations under overcast conditions, J. Geopys. Res., 113, doi:10.1029/2008JD009815.

Valkonen, T., T. Vihma, and M. Doble (2008), Mesoscale modelling of the atmospheric boundary layer over the Antarctic sea ice: a late autumn case study. Mon. Wea. Rev., 136, 1457-1474.

Stössel, A., W.-G. Cheon, and T. Vihma (2008), Interactive momentum flux forcing over sea ice in a global ocean GCM, J. Geophys. Res, 113, C05010, doi:10.1029/2007JC004173.

Tietäväinen, H. and T. Vihma (2008), Atmospheric moisture budget over Antarctica and Southern Ocean on the basis of ERA-40 reanalysis. Int. J. Climatol., 28, 1977-1995, doi: 10.1002/joc.1684.