Arctic meteorology

FMI carries out research in Arctic meteorology. A recent (2005-2010) major project was DAMOCLES, where FMI coordinated the atmospheric work package. Studies continue in analyses of DAMOCLES data sets and within an ARCFAC project "Atmospheric boundary layer and its interaction with snow and sea ice in Svalbard fjords" (ABL-SF). Collaboration is made, among others, with the University Centre in Svalbard, University of Tartu, Alfred Wegener Institute, Stockholm University, and Norwegian Polar Institute.

In addition to data analyses, the work is based on numerical modelling applying HIRLAM and WRF. The Arctic work is also closely connected to studies on marine meteorology over the ice-covered Baltic Sea.

The main objectives of the work are to obtain a better quantitative knowledge on meteorological processes in the Arctic and utilize this to improve numerical weather prediction and climate models. The following issues are studied:

  • Radiative and turbulent surface fluxes over sea ice
  • Atmospheric boundary layer over sea ice, leads, and polynyas
  • Meteorological processes in Svalbard fjords
  • Atmospheric moisture budget over the circumpolar Arctic
  • Inter-annual and decadal variability in the Arctic sea ice 
  • Wind forcing on sea ice drift
  • Snow and sea ice thermodynamics

 
More information: Timo Vihma / Finnish Meteorological Institute
.
 

In winter Arctic sea ice releases a lot of heat and moisture to the atmosphere. The ice ridges and floe edges enhance the wind forcing on sea ice drift (photo: Timo Vihma).


Fjord meteorology is an active study topic. In Arctic fjords, the local weather conditions are affected by the complex topography and the temperature difference between the open sea and sea ice.
 

Measurements of solar radiation and thermal longwave radiation in Svalbard in early spring 2009 (photo: Timo Vihma).

 

Recent publications

Mäkiranta, E., T. Vihma, and A. Sjöblom (2010), Observations and modelling of the
atmospheric boundary layer over sea ice in a Svalbard fjord, Boundary-Layer Meteorol., accepted.

Kilpeläinen, T., T. Vihma, and H. Olafsson (2010), Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard, Tellus, in press.

Lüpkes, C., T. Vihma, G. Birnbaum, S. Dierer, T. Garbrecht, V.M. Gryanik, M. Gryschka, J. Hartmann, G. Heinemann, L. Kaleschke, S. Raasch, H. Savijärvi, K.H. Schlünzen, and U. Wacker, Mesoscale modelling of the Arctic atmospheric boundary layer and its interaction with sea ice, Chapter 7 in Arctic Climate System Study (book), accepted.

Jakobson, E. and T. Vihma, Atmospheric moisture budget over the Arctic on the basis of the ERA-40 reanalysis. Int. J. Climatol., Published Online: 16 October 2009, DOI: 10.1002/joc.20392009.

Vihma, T. (2010). Atmosphere-snow/ice interactions. In: V.P. Singh, P. Singh, U.K. Haritashya (Eds.) Encyclopedia of snow, ice and glaciers. Springer, in press.
Lüpkes, C., T. Vihma, E. Jakobson, G. König-Langlo, and A. Tetzlaff (2010). Meteorological observations from ship cruises during summer to the central Arctic: A comparison with reanalysis data. Geophys. Res. Lett., 37, L09810, doi:10.1029/2010GL042724
Riihelä. A., Laine, V., Manninen, T., Palo, T., and Vihma, T. (2010) Validation of the Climate-SAF surface broadband albedo product: comparisons with in situ observations over Greenland and the ice-covered Arctic Ocean. Remote Sensing of Environment, 114, 2779–2790.

Vihma, T. and J. Haapala (2009), Geophysics of sea ice in the Baltic Sea – a review, Progress in Oceanography, 80, 129-148 , doi: 10.1016/j.pocean.2009.02.002

Lüpkes, C., T. Vihma, G. Birnbaum, and U. Wacker (2008), Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night, Geophys. Res. Lett., 35, L03805, doi:10.1029/2007GL032461.

Pirazzini, R., 2009. Challenges in snow and ice albedo parameterizations, Geophysica, 45(1-2), 41-62.

Vihma, T., J. Jaagus, E. Jacobson, and T. Palo (2008), Meteorological conditions in the Arctic Ocean in spring and summer 2007 as recorded on the drifting ice station Tara, Gephys. Res. Lett., 35, L18706, doi: 10.1029/2008GL034681.

Pirazzini, R. (2008). Factors controlling the surface energy budget over snow and ice (PhD Thesis). Finnish Meteorological Institute Contributions, 75, 48 p. + 6 appendices.

Pirazzini, R., and P. Räisänen (2008). A method to account for surface albedo heterogeneity in single column radiative transfer calculations under overcast conditions, J. Geopys. Res., 113, doi:10.1029/2008JD009815.

Tisler, P., T. Vihma, G. Müller, and B. Brümmer (2008), Modelling of warm-air advection over Arctic sea ice, Tellus, 60A, 775–788.

Cheng, B., Z. Zhang, T. Vihma, M. Johansson, L. Bian, Z. Li and H. Wu (2008). Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE2003 data, J. Geophys. Res., 113, C09020, doi:10.1029/2007JC004654.

Cheng, B., T. Vihma, Z. Zhang, Z. Li, and H. Wu (2008). Snow and sea ice thermodynamics in the Arctic: Model validation and sensitivity study against SHEBA data. Chinese J. Polar Sci., 19, 108-122.

Mäkynen, M., B. Cheng, M. Similä, T. Vihma, and M. Hallikainen (2007), Comparisons between SAR backscattering coefficient and results of a thermodynamic snow/ice model for the Baltic Sea land-fast sea ice, IEEE Transactions on Geoscience and Remote Sensing, 45, 1131-1141, 2007.

Pirazzini, R., T. Vihma, M. A. Granskog, and B. Cheng, Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period, Ann. Glaciol., 44, 7-14, 2006.

Cheng, B., T. Vihma, R. Pirazzini and M. Granskog, Modeling of superimposed ice formation during spring snow-melt period in the Baltic Sea. Ann. Glaciol., 44, 139-146, 2006.

Granskog, M, T. Vihma, R. Pirazzini, and B. Cheng, Superimposed ice formation and surface fluxes on sea ice during the spring melt-freeze period in the Baltic Sea, J. Glaciol., 52, 119-127, 2006.

Vihma, T., Preface (for the Special Issues on the atmospheric boundary layer over sea ice), Boundary-Layer Meteorol., 117, 1-4, 2005.

Vihma, T., and R. Pirazzini, On the factors controlling the snow surface and 2-m air
temperatures over the Arctic sea ice in winter, Bound.-Layer Meteorol., 117, 73-90, 2005.

Vihma, T., C. Lüpkes, J. Hartmann, and H. Savijärvi, Observations and modelling of cold-air advection over Arctic sea ice in winter, Bound.-Layer Meteorol., 117, 275-300, 2005.
 

4.12.2010